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Introduction

GRAHAM’S paper?! on the use of orthogonal loadings as a
method of obtaining minimum drag wing shapes seems to
have largely gone unnoticed. The reason appears to lie in
the tedious method he had proposed to obtain a set of
orthogonal loadings that was not suitable for digital com-
puters. In this Note we show how Graham’s method could
be adopted for automatic calculations.

The drag, in orthogonal loadings, has the great merit of
sharing with the velocity components, the pressure and
the downwash distribution, the property of superposition.
It was further shown that if one obtains a set of lifting
pressure loadings, any linear combination of its members,
each carrying positive lift, would give smaller drag for a
given total lift than any single member carrying the same
total lift. It may also be shown that the absolute mini-
mum may be reached as close as desired by adding addi-
tional loadings to the set. This immediately shows that
orthogonal loadings may be used in a constructive way to
design minimum drag wings. The minimum drag theo-
rems of Munk? and Jones® have not been very useful in
this respect since they only tell us the properties of mini-
mum drag wings in a combined flowfield, and say nothing
about the value of the minimum drag, or how to achieve
it. Graham’s method, to a large extent, overcomes these
difficulties. The results are valid when leading-edge singu-
larities are not present.

Graham’s Method of Orthogonalization

Let P, = (p;, «;) be a pressure loading, where p; is the
wing surface pressure coefficient distribution due to an in-
cidence distribution «;. Two loadings P,, P, are of differ-
ent types if

pi * €p;

where ¢ is a constant, called the intensity of loading. If we
now define the drag coefficient due to two pressure load-
ings

P;,P;as f(f’iai +pjaj)ds + f(piaj +pj0£,~)ds,

then these two loadings are said to be mutually orthogonal
if their interference drag is zero; i.e.,

f(f’iaj +p;@)ds =0 1

where the integration is over the entire wing surface. It is
also assumed that the loadings do not have leading edge
singularities.

Now suppose P = (Py, Ps, ..., Py) is a set of nonortho-
gonal loadings and P = (Py, P2 ..., P,) is an orthogonal
set derived from P. The first member of P is arbitrarily
chosen as

Py =py, ¥y =0y ()

The second member is taken to be of the form
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P =P + Py, @ = @y + ca, (3)
Using the orthogonality criterion
[y + pyaty)ds = 0

gives
¢ = — 2dy,/(dyy + dyy) ()

where
d;; = [ p;o,ds )

The third member P3 is obtained in a similar fashion. Let
P; = p1 + Coby + Py

A3 = Qy + oy, + Cc304 68)

where c2 and c3 are constants. Using the orthogonality cri-
terion, we have

f(p3°‘1 + Pig) ds = 0
f(Pzaz + pag)ds =0 ("N

from which we deduce
2dyy + cyldyy + dyy) + c3(dyy + dy) = 0

(dig + dyy) + 2Cydy, + Cyldyy + dyp) =

I
[=]

(8)

which may be solved for c2 and c3.

Clearly the process becomes laborious for successive
members in the set P and is not suitable for digital com-
puters. Further, the orthogonal set is not unique since the
process could have been started with any member of the
set Pinstead of the first one.

A Rational Approach

We now place the orthogonalization process on a more
formal footing and show that it amounts to diagonalizing
a certain matrix, a process which can be achieved in any
number of ways.# This nonuniqueness may be exploited to
suit different kinds of computational requirements.

The drag expression may be written as

Cp, = EDET (9

where E = {e1, €2 ..., €,} is a row vector in load intensi-
ties, and D is a symmetric matrix, the elements d;; of
which may be defined, without any loss of generality, as

1
di; =5 [, + pa)ds (10)

The definition of orthogonal loadings requires that Eq.
(9) be expressed in a form such that D is transformed to a
diagonal matrix. If D is nonsingular and real, this is possi-
ble. Let G be a square matrix such that GDGT results in
a diagonal matrix. Hence

Cp = EG'GDGTGTET 1
= EDET
where
D = GDGT (12)

is a diagonal matrix, and E = E G —1 is the intensity vec-
tor in the transformed space.

From matrix theory we know that D does not have a
unique diagonal, hence G is not a unique transformatior}.
One may use this nonuniqueness to diagonalize D to suit
different conditions. We mention here only two methods
of obtaining G. In the first method, the eigenvalues of D
are obtained. The corresponding eigenvectors placed col-
umn by column may be taken to constitute G, in which
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case, D contains the eigenvalues in the diagonal. G then is
an orthonormal modal matrix of D.

811 821 .. 8nt
G = 819 899 oo 8n2 (13)

gln g2n L] gnn

and
d, 0 0
D= {0 dyy ... 0 = GDGT (14)
0 0 ... 0n

where the jth column in G is the eigenvector correspond-
ing to the jth eigenvalue d;;. This method is easy to use
since computer programs for finding the eigenvalues and
eigenvectors of a real symmetric matrix are easily avail-
able.5

The second method is to look for a matrix G which is
triangular; i.e.,

811 812 ¢+« 8in
G =10 99 o os Son (15)
0 0 ... %m
where
giiz = A/ A, (16)

and A;_j is the determinant obtained by striking out the
last k rows and last k& columns from the matrix D. The re-
maining g;; are obtained from

dip = 2818wy R =7 +1,...,n amn

the procedure outlined by Graham appears to be equiva-
lent to this latter method of diagonalization.

Two-Constraint Minimization Problem

It may now be expected that the drag minimization cal-
culation would be simplified. Consider for example, the
problem of obtaining minimum drag subject to given lift
and pitching moment constraints. The problem is

Minimize Cp = Tetd;;

subject to Te;l; = Cy (18)

Z€imi = CM

where d;;, l;, and m; are the drag, lift and moment coeffi-
cients, respectively, due to unit intensity of the ith mem-
ber in an orthognal set. C; and Cj are prescribed lift and
moment coefficients, respectively. The corresponding un-
constrained problem is

Minimize Ze.%d;; + N(Z€;l; — Cp) + MEem; — Cy)
19)

where \; and A2 are the Lagrange multipliers. The neces-
sary conditions that Eq. (19) be a minimum are

2eid;; + M1+ Agmy =050 = 1,200, 2 (20)
Eeili =C
- 1)
261-’}’}’[,- = CM
Multiplying Eq. (20) by ¢; and summing over ¢ and using
the two constraint equations (21), we have

M o= — (LCy + 2Cp)/Cy (22)
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Substituting for A in Eq. (20) we have

1126, Cyl;
“=aay et u(mtg)] e

and for Cp we find

2 2
Cfrlie — 20,025 4 ¢ 1
C — ii djj djj (24)
D 12 _m2 ( ,1.m.>2
soi w0 wii™
dii djf di]'

Equation (20) then yields

2Cp Im; C Im, m;*
= {2C .__DE_J_.L/(_M Mk _1_)

h ( " Cr d; ) Cr g d;; Zdij @5)
When only the lift constraint is given, setting A2 = 0 gives
the results obtained in Ref. 1.

The Langrange multiplier method when applied to no-
northogonal loads may give rise to an ill-conditioned ma-
trix and higher precision may be required to obtain rea-
sonable results. The orthogonal loading method alleviates
this problem and should be suitable for digital calcula-
tions.
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Nomenclature
a,a;,a;" = bending frequency coefficients
BiBi By = torsional frequency coefficients
p = fluid density
ps = structural density
ap = allowable bending stress
O = allowable shear stress
I = aircraft relative mass
w = frequency (rad/sec)
a’ = sonic velocity
z = mean aerodynamic chord

c1’,¢c2’,¢1”’,¢2”” = frequency coefficients
gravitational acceleration
reduced frequency parameter
semispan length

wing mass per unit length
wing thickness at root

= modulus of elasticity
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